全新视角看世界模型:从视频生成迈向通用世界模拟器
全新视角看世界模型:从视频生成迈向通用世界模拟器近年来,视频生成(Video Generation)与世界模型(World Models)已跃升为人工智能领域最炙手可热的焦点。从 Sora 到可灵(Kling),视频生成模型在运动连续性、物体交互与部分物理先验上逐渐表现出更强的「世界一致性」,让人们开始认真讨论:能否把视频生成从「逼真短片」推进到可用于推理、规划与控制的「通用世界模拟器」。
近年来,视频生成(Video Generation)与世界模型(World Models)已跃升为人工智能领域最炙手可热的焦点。从 Sora 到可灵(Kling),视频生成模型在运动连续性、物体交互与部分物理先验上逐渐表现出更强的「世界一致性」,让人们开始认真讨论:能否把视频生成从「逼真短片」推进到可用于推理、规划与控制的「通用世界模拟器」。
刚刚,Alphabet 旗下的自动驾驶汽车公司 Waymo,推出了最新世界模型 Waymo World Model,其基于 DeepMind 的 Genie 3 构建,在大规模、超真实自动驾驶仿真方面树立了全新的行业标杆。
让模型真正 “能行动”,往往需要一个可执行、可验证的符号世界模型(Symbolic World Model):它不是抽象的文字描述,而是能被规划器或执行器直接调用的形式化定义 —— 例如 PDDL 领域 / 问题,或可运行的环境代码 / 模拟器。
还记得那个穿着「Lululemon」紧身衣、主打温柔陪伴的家用人形机器人 NEO 吗?
近年来,视频扩散模型在 “真实感、动态性、可控性” 上进展飞快,但它们大多仍停留在纯 RGB 空间。模型能生成好看的视频,却缺少对三维几何的显式建模。这让许多世界模型(world model)导向的应用(空间推理、具身智能、机器人、自动驾驶仿真等)难以落地,因为这些任务不仅需要像素,还需要完整地模拟 4D 世界。
在李飞飞团队 WorldLabs 推出 Marble、引爆「世界模型(World Model)」热潮之后,一个现实问题逐渐浮出水面:世界模型的可视化与交互,依然严重受限于底层 Web 端渲染能力。
主攻 AI 视频与多媒体生成技术的独角兽 Runway 也来了一波大的:一口气来了 5 个「激动人心的宣布」。这一波更新之猛,甚至让人觉得他们是不是把过去半年的大招一次性全放了出来。Runway 这一波发布,不仅刷新了视频生成的各项指标,更重要的是,他们正式对外展示了其在通用世界模型(General World Models/GWM)上的野心。
如今 LLM 的语言理解与生成能力已展现出惊人的广泛适用性,但随着 LLM 的发展,一个事实越发凸显:仅靠语言,仍不足以支撑真正的智能。
人工智能研究的最新目标,尤其是在追求“通用人工智能”(AGI)的实验室中,是一个被称为“世界模型”(world model)的概念:这是一种AI内部携带的环境表征,就像一个计算型的雪球玻璃球。AI系统可以借助这个简化的内部模型,在真正执行任务之前,先对预测和决策进行评估。
近来,世界模型(World Model)很火。多个 AI 实验室纷纷展示出令人惊艳的 Demo:仅凭一张图片甚至一段文字,就能生成一个可交互、可探索的 3D 世界。这些演示当然很是炫酷,它们展现了 AI 强大的生成能力。